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Chapter 1

Introduction

Synchronization is a phenomenon commonly found in nature and, as is often the
case, it takes many shapes and forms. From the coordination between neurons
in our brains or fire-fly lights, to synchronization found in electrical grids and
financial markets. What started in the 17th century with Huygens’ investigation
into the behavior of two weakly interacting pendulum clocks through a heavy beam
(see Willms, Kitanov, and Langford 2017) has since evolved into a field rich with
both theory and applications.

The key application and motivation of this thesis lies, as the name may suggest,
in brain dynamics. Several studies have shown that high-frequency oscillations
(HFOs), very high-frequency oscillations (VHFOs), and even ultra-fast oscillations
(UFOs) in electroencephalographic (EEG) recordings measured deep in the brain
could be potentially used as biomarkers of epileptogenic zones of focal epilepsy.
Furthermore, there is also evidence they correlate with the severity of epilepsy.
Research suggests that higher frequencies oscillations (VFHOs and UFOs) are
more local, i.e. spatially restricted, than traditional HFOs, thus providing better a
guidance in locating the areas of epilepsy. Fast oscillations lie outside the realm
of physiologically possible frequencies of single neurons. This indicates another
mechanism must be at play, but its identification is an open question in neuroscience.

Primary goal of this thesis is to provide an insight into a small part of computational
analysis in neuroscience – the phase synchronization1 of small networks of neurons,
behaviors arising from this phenomenon and techniques used in its exploration.
Nonetheless, other models and applications will be considered when appropriate.
To be more precisely, we will mainly be concerned with different methods of the
computation exploration of this phenomenon in various models.

1By phase synchronization we mean the state when the difference in phase of the oscillators
remains bounded while e.g. their amplitudes may differ (Pikovsky, Rosenblum, and Kurths 2001).
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1.1 Approaches
Simulation v. Bifurcations (maybe add later)

1.2 Structure
1. Introduction of the importance of synchronization on (multiple) examples

1. biomarker for epilepsy
2. in other fields…
3. And explanation that we will mainly focus on comparison of simulation

vs bifurcations (not anything else, though it is a vast topic)
• It is NOT a frequency analysis thesis

2. Theoretical introduction to ODEs and DDEs and 1D optimization methods
1. ODE, DDE, limit cycle
2. introduce numerical solvers of ODEs (RK45, Euler-Maruyama)
3. introduce method of steps
4. introduce basic 1D optimization methods

3. Introduction to neuron models (and mathematical modeling in neuroscience
in general)

1. probably Interneuron, VdP, but possibly others (Hodgkin-Huxley for-
malism, HH type models)

2. explain types of coupling
3. Showcase of NeuronToolbox.jl

• how it simplifies the code and makes it more readable
• TODO: improve the usefulness and the code
• TODO: add support for DDEs
• TODO: rework all the examples to use this library
• TODO: publish it :)

4. Simulation approach
1. first start with the intuitive approach
2. each time show its “performance” (and time/memory complexity)
3. introduce different period & shift searching techniques
4. introduce different starters, indexers and iterators (and really explain

the need for all of these concepts)
5. introduce periodicity checkers
6. briefly mention multithreading, metacentrum and cloud computing?

5. Bifurcations approach
1. introduce bifurcation theory with emphasis on DDEs and mainly con-

tinuations of periodic orbits
1. include a treatment of collocations, newtons method, basic continu-

ation description
2. describe theory and numerical method for computing Floquet multipli-

ers
3. explain/show implementation for DDEBifurcationKit.jl



• TODO: Actually do the implementation
4. show the same example as in Simulation approach computed with bi-

furcations
6. Compare Simulations vs Bifurcations

1. compare the time/memory/theory/implementation complexity
2. compare the parametric dependence
3. compare the accuracy

7. Conclusion





Chapter 2

A primer on dynamical systems

In the Introduction 1, we have motivated the entire thesis with the usefulness of
the knowledge and of the understanding of synchronization in neuroscience. But
we will not describe any experiments performed on real couples of neurons in a
lab. Instead, we shall deal with the mathematical abstraction for the studied object,
e.g. the coupled neurons.

This abstraction is typically called a (mathematical) model (of the reality). The
model should, in theory, capture all the important characteristics of the underlying
reality. If the state of the model evolves in time, e.g. a model of neuron starts spiking,
we usually call this model a dynamical system.

Definition 2.1 (Dynamical system). A dynamical system is a triple {𝕋, 𝕏, 𝜑𝑡}, where
𝕋 ⊆ ℝ (time) endowed with addition + is a subgroup of (ℝ, +), 𝕏 is a metric space
(called a state space), and {𝜑𝑡}𝑡∈𝕋 is a family of evolution operators parametrized
by 𝑡 ∈ 𝕋, such that 𝜑𝑡 ∶ 𝕏 → 𝕏 maps a certain point 𝑥0 ∈ 𝕏 to some other state
𝑥𝑡 = 𝜑𝑡𝑥0 ∈ 𝕏.

In the Definition 2.1, the time set 𝕋 can take on various forms. In ecology, we
often see a discrete 𝕋 = ℕ0 or 𝕋 = ℤ representing a yearly interval between
measurements of our system. On the other hand, in physics (and neuroscience) we
typically employ 𝕋 = ℝ as we are concerted with even the shortest time intervals
and associated changes. Similarly, the exact choice of the state space 𝕏 is dependent
of the system in question, but typically we use ℝ𝑛.

Right now, nothing in the Definition 2.1 guarantees the system does not abruptly
change state, because in general 𝑥 ≠ 𝜑0𝑥. If this equality does not hold for at least
one 𝑥 ∈ 𝕏, then such system is called stochastic.

Definition 2.2 (Deterministic dynamical system). A dynamical system, see Defini-
tion 2.1, is called deterministic if and only if the following condition is fulfilled

𝜑0 = id, (2.1)

in other words ∀𝑥 ∈ 𝕏 ∶ 𝑥 = 𝜑0𝑥.
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Onwards, we will predominantly use deterministic dynamical systems. Another
assumption we shall make throughout this thesis is that the “laws of nature” do not
change in time, i.e., we presume the dynamical system in question is autonomous
(although it may depend on the past).

Definition 2.3 (Autonomous dynamical system). A deterministic dynamical system,
see Definition 2.2, is called autonomous if and only if the following condition is
fulfilled

∀𝑡, 𝑠 ∈ 𝕋 ∶ 𝜑𝑡+𝑠 = 𝜑𝑡 ∘ 𝜑𝑠, (2.2)

in other words ∀𝑥 ∈ 𝕏 ∀𝑡, 𝑠 ∈ 𝕋 ∶ 𝜑𝑡+𝑠𝑥 = 𝜑𝑡(𝜑𝑠𝑥).

Most often, a dynamical system is given implicitly by some differential equation,
be it an ordinary differential equation (ODE), e.g.1

̇𝑥(𝑡) =
d𝑥(𝑡)

d𝑡
= 𝑥(𝑡) ⋅ 𝑟0 ⋅ (1 −

𝑥(𝑡)
𝐾 ) , (2.3)

or a delay differential equation (DDE), for example a modified (2.3)

̇𝑥(𝑡) = 𝑥(𝑡 − 𝜏) ⋅ 𝑟0 ⋅ (1 −
𝑥(𝑡)
𝐾 ) ,

where 𝜏 > 0.

2.1 Basic concepts
In this section, we shall introduce basic concepts regarding dynamical systems
including, but not limited to, notions of certain special solutions and their stability.
Little comment beside the definitions themselves will be provided, as an interested
reader can find much more in

Definition 2.4 (Orbit). An orbit (trajectory) with an initial point 𝑥0 ∈ 𝕏 is an ordered
subset of the state space 𝕏,

𝑂𝑟 (𝑥0) = {𝑥 ∈ 𝕏 | 𝑥 = 𝜑𝑡𝑥0, ∀𝑡 ∈ 𝕋 such that 𝜑𝑡𝑥0 is defined}

In the case of a continuous dynamical system, the orbits are oriented curves in the
state space. For a discrete dynamical systems, they become sequences of points in
𝕏.

Definition 2.5 (Phase portrait). A phase portrait of a dynamical system is a parti-
tioning of the state space into trajectories.

Definition 2.6 (Equilibrium). A point 𝑥0 ∈ 𝕏 is called an equilibrium (fixed point) if
𝜑𝑡𝑥0 = 𝑥0 for all 𝑡 ∈ 𝕋.

1The equation (2.3) describes the Verhulst model of a population (and its growth, characterized
by 𝑟0) in some closed environment with some finite capacity (controlled by 𝐾).

https://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst


Definition 2.7 (Cycle). A cycle is a periodic orbit, namely a non-equilibrium orbit 𝐿,
such that each point 𝑥0 ∈ 𝐿 satisfies 𝜑𝑡+𝑇𝑥0 = 𝜑𝑡𝑥0 with some 𝑇 > 0, for all 𝑡 ∈ 𝕋.
The smallest admissible 𝑇 is called the period of the cycle 𝐿.

Definition 2.8 (Invariant set). An invariant set of a dynamical system {𝕋, 𝕏, 𝜑𝑡} is a
subset 𝕊 ⊂ 𝕏 which satisfies

𝑥 ∈ 𝕊 ⟹ 𝜑𝑡𝑥 ∈ 𝕊 ∀𝑡 ∈ 𝕋.

Definition 2.9 (𝜔-limit and 𝛼-limit point). A point 𝑥∗ ∈ 𝕏 is called an 𝜔-limit point
(resp. 𝛼-limit point) of the orbit 𝑂𝑟 (𝑥0) starting at 𝑥0 ∈ 𝕏 if their exists a sequence
of times {𝑡𝑘}∞

𝑘=1 ⊆ 𝕋 with 𝑡𝑘 → ∞ (resp. 𝑡𝑘 → −∞), such that

𝜑𝑡𝑘𝑥0 ⟶
𝑘→∞

𝑥∗.

Definition 2.10 (𝜔-limit and 𝛼-limit set). A set Ω(𝑂𝑟 (𝑥0)) of all 𝜔-limit points of the
orbit 𝑂𝑟 (𝑥0), see Definition 2.9, is called an 𝜔-limit set. Similarly, a set 𝔸(𝑂𝑟 (𝑥0))
of all 𝛼-limit points of the orbit 𝑂𝑟 (𝑥0) is called an 𝛼-limit set.

Lastly, a set Λ(𝑂𝑟 (𝑥0)) = Ω(𝑂𝑟 (𝑥0)) ∪ 𝔸(𝑂𝑟 (𝑥0)) of all limit points of the orbit
𝑂𝑟 (𝑥0) is called its limit set.

Definition 2.11 (Limit cycle). A limit cycle is a cycle of a dynamical system, see
Definition 2.7, which is also a limit set, see Definition 2.10, of neighboring orbits.
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