Bibliography
[1]
Atherton, L. A.,
Prince, L. Y. and Tsaneva-Atanasova, K. (2016). Bifurcation analysis of
a two-compartment hippocampal pyramidal cell model. Journal of
Computational Neuroscience 41 91–106.
[2]
Bellen, A. and
Zennaro, M. (2003). Numerical
methods for delay differential equations. Oxford University
Press.
[3]
Bezanson, J.,
Edelman, A., Karpinski, S. and Shah, V. B. (2017). Julia: A
fresh approach to numerical computing. SIAM Review
59 65–98.
[4]
Veltz, R.
(2020). BifurcationKit.jl.
[5]
Brázdil, M.,
Pail, M., Halámek, J., Plešinger, F., Cimbálník, J., Roman, R., Klimeš, P., Daniel, P., Chrastina, J., Brichtová, E., Rektor, I., Worrell, G. A. and Jurák, P. (2017). Very high‐frequency
oscillations: Novel biomarkers of the epileptogenic zone. Annals
of Neurology 82 299–310.
[6]
Brázdil, M.,
Worrell, G. A., Trávníček, V., Pail, M., Roman,
R., Plešinger, F., Klimeš, P., Cimbálník, J., Stacey, W. and Jurák, P. (2023). Ultra fast
oscillations in the human brain and their functional
significance.
[7]
Breda, D., Maset, S. and Vermiglio, R. (2006). NUMERICAL
COMPUTATION OF CHARACTERISTIC MULTIPLIERS FOR LINEAR TIME PERIODIC
COEFFICIENTS DELAY DIFFERENTIAL EQUATIONS. IFAC Proceedings
Volumes 39 163–8.
[8]
Breda, D.
(2006). Solution
operator approximations for characteristic roots of delay differential
equations. Applied Numerical Mathematics
56 305–17.
[9]
Brin, L. Q.
(2020). Tea time
numerical analysis.
[10]
Butcher, J. C.
(2016). Numerical
methods for ordinary differential equations. Wiley.
[11]
Chicone, C.
(2006). Ordinary differential equations with applications.
Springer, New York, NY.
[12]
Cimbalnik, J.,
Brinkmann, B., Kremen, V., Jurak, P., Berry, B., Gompel, J. V., Stead, M. and Worrell, G. (2018). Physiological and pathological
high frequency oscillations in focal epilepsy. Annals of
Clinical and Translational Neurology 5
1062–76.
[13]
Cimbalnik, J.,
Pail, M., Klimes, P., Travnicek, V., Roman, R., Vajcner, A. and Brazdil, M. (2020). Cognitive processing
impacts high frequency intracranial EEG activity of human hippocampus in
patients with pharmacoresistant focal epilepsy. Frontiers in
Neurology 11.
[14]
Curtain, R. F.
and Zwart, H. (1995). An introduction to
infinite-dimensional linear systems theory. Springer New
York.
[15]
Dhooge, A.,
Govaerts, W. and A. Kuznetsov, Yu. (2003). MatCont:
A MATLAB package for numerical bifurcation analysis of
ODEs. ACM Transactions on Mathematical
Software 29 141–64.
[16]
Dhooge, A.,
Govaerts, W., A.
Kuznetsov, Yu., Meijer, H. G. E.
and Sautois, B. (2008). New features of the
software MatCont for bifurcation analysis of dynamical
systems. Mathematical and Computer Modelling of Dynamical
Systems 14 147–75.
[17]
Diekmann, O.,
Verduyn Lunel, S. M., Gils, S. A. van and Walther, H.-O. (1995). Delay
equations. Springer New York.
[18]
Doedel, E.,
Keller, H. B. and Kernevez, J. P. (1991). NUMERICAL ANALYSIS AND
CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE
DIMENSIONS. International Journal of Bifurcation and Chaos
01 745–72.
[19]
Elaydi, S.
(2005). An introduction to difference equations. Springer
Science+Business Media.
[20]
Engelborghs, K.,
Luzyanina, T., Hout, K. J. I. ’t. and Roose, D. (2001). Collocation methods for
the computation of periodic solutions of delay differential
equations. SIAM Journal on Scientific Computing
22 1593–609.
[21]
Engelborghs, K.
and Roose, D. (2002). On stability of LMS
methods and characteristic roots of delay differential equations.
SIAM Journal on Numerical Analysis 40
629–50.
[22]
Ermentrout, G.
B. and Terman, D. H. (2010). Mathematical
foundations of neuroscience. Springer New York.
[23]
Fairgrieve, T.
F. and Jepson, A. D. (1991). O. K. Floquet multipliers.
SIAM Journal on Numerical Analysis 28
1446–62.
[24]
Govaerts, W.,
Kuznetsov, Y. A. and Dhooge, A. (2005). Numerical continuation of
bifurcations of limit cycles in MATLAB. SIAM Journal on
Scientific Computing 27 231–52.
[25]
Guo, S. and
Wu, J. (2013). Bifurcation theory of
functional differential equations. Springer New York.
[26]
Hairer, E.,
Nørsett, S. P. and Wanner, G. (2008). Solving ordinary
differential equations I. Springer, Berlin,
Germany.
[27]
Halaštová, B.
(2025). Analýza signálů v
neurovědách. Master's thesis, Masarykova univerzita,
Přírodovědecká fakulta, Brno.
[28]
Hale, J. K.
(1977). Theory
of functional differential equations. Springer New York.
[29]
Hale, J. K. and
Lunel, S. M. V. (1993). Introduction to
functional differential equations. Springer New York.
[30]
Hartman, P.
(2002). Ordinary differential equations. Society for
Industrial; Applied Mathematics.
[31]
Hellevik, L. R.
(2020). Numerical methods for engineers.Available at https://leifh.folk.ntnu.no/teaching/tkt4140/.
[32]
Hodgkin, A. L.
and Huxley, A. F. (1952). A quantitative
description of membrane current and its application to conduction and
excitation in nerve. The Journal of Physiology
117 500–44.
[33]
Hutchinson, G.
E. (1948). Circular
causal systems in ecology. Annals of the New York Academy of
Sciences 50 221–46.
[34]
Izhikevich, E.
M. (2006). Dynamical systems
in neuroscience: The geometry of excitability and bursting. The
MIT Press.
[35]
Jacobs, J.,
LeVan, P., Chander, R., Hall, J., Dubeau, F. and Gotman, J. (2008). Interictal
high‐frequency oscillations (80–500 hz) are an indicator of seizure
onset areas independent of spikes in the human epileptic brain.
Epilepsia 49 1893–907.
[36]
Jacobs, J.,
Staba, R., Asano, E., Otsubo, H., Wu,
J. Y., Zijlmans, M., Mohamed, I., Kahane, P., Dubeau, F., Navarro, V. and Gotman, J. (2012). High-frequency
oscillations (HFOs) in clinical epilepsy. Progress in
Neurobiology 98 302–15.
[37]
Jekl, J. (2018).
Matematické modely
neuronu. Master's thesis, Masarykova univerzita, Přírodovědecká
fakulta, Brno.
[38]
Jiruska, P.,
Curtis, M. de, Jefferys, J. G. R., Schevon, C. A., Schiff, S. J. and Schindler, K. (2013). Synchronization and
desynchronization in epilepsy: Controversies and hypotheses. The
Journal of Physiology 591 787–97.
[39]
Jiruska, P.,
Alvarado‐Rojas, C., Schevon, C. A., Staba, R., Stacey, W., Wendling, F. and Avoli, M. (2017). Update on the mechanisms and
roles of high‐frequency oscillations in seizures and epileptic
disorders. Epilepsia 58 1330–9.
[40]
[41]
Kloeden, P. E.
and Platen, E. (1992). Numerical solution of
stochastic differential equations. Springer Berlin
Heidelberg.
[42]
Kochenderfer, M.
J. and Wheeler, T. A. (2019).
Algorithms for optimization. MIT Press, London, England.
[43]
Kolmanovskii, V.
and Myshkis, A. (1992). Applied theory of
functional differential equations. Springer Netherlands.
[44]
[45]
Kuznetsov, Y. A.
(2023). Elements
of applied bifurcation theory. Springer International
Publishing.
[46]
Lacerda de Orio,
R. (2010). Electromigration
modeling and simulation. PhD thesis, echnische
Universität Wien.
[47]
Lecar, H.
(2007). Morris-Lecar
model. Scholarpedia 2 1333.
[48]
Linge, S. and
Langtangen, H. P. (2017). Nonlinear
problems. In Finite difference computing with PDEs pp
353–407. Springer International Publishing.
[49]
Lust, K. and
Roose, D. (1998). An adaptive
newton–picard algorithm with subspace iteration for computing periodic
solutions. SIAM Journal on Scientific Computing
19 1188–209.
[50]
Danisch, S. and
Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data
visualization for Julia. Journal of Open Source
Software 6 3349.
[51]
Inc., T. M.
(2023). MATLAB version:
23.2.0.2365128 (R2023b).
[52]
Mohammed, S. E.
A. (1986). Nonlinear
flows of stochastic linear delay equations. Stochastics
17 207–13.
[53]
Morris, C. and
Lecar, H. (1981). Voltage
oscillations in the barnacle giant muscle fiber. Biophysical
Journal 35 193–213.
[54]
Murray, J. D.
(2002). Mathematical
biology: I. An introduction. Springer New York.
[55]
Perko, L.
(2001). Differential equations
and dynamical systems. Springer New York.
[56]
Pikovsky, A.,
Rosenblum, M. and Kurths, J. (2001). Synchronization: A
universal concept in nonlinear sciences. Cambridge University
Press.
[57]
Pinsky, P. F.
and Rinzel, J. (1994). Intrinsic and network
rhythmogenesis in a reduced traub model for CA3 neurons. Journal
of Computational Neuroscience 1 39–60.
[58]
Přibylová, L.
(2021). Teorie
bifurkací, chaos a fraktály. Masarykova univerzita.
[59]
Přibylová, L.
(2021). Nelineární
dynamika. Masarykova univerzita.
[60]
Přibylová, L.,
Ševčík, J., Eclerová, V., Klimeš, P., Brázdil, M. and Meijer, H. G. E. (2024). Weak coupling of neurons
enables very high-frequency and ultra-fast oscillations through the
interplay of synchronized phase shifts. Network
Neuroscience 8 293–318.
[61]
Přibylová, L.,
Ševčík, J., Halmazňa, T., Husa, Š., Malárik, P., Kajanová, L., Polách, M., Zapadlo, Š. and Eclerová, V. (2025). Chaos links dendritic
calcium to bursting in hippocampal pyramidal cells. Chaos,
Solitons and Fractals.
[62]
[63]
Rackauckas, C.
and Nie, Q. (2017).
DifferentialEquations.jl–a performant and feature-rich
ecosystem for solving differential equations in Julia.
Journal of Open Research Software 5.
[64]
Roose, D. and
Szalai, R. (2007). Continuation and
bifurcation analysis of delay differential equations. In
Numerical continuation methods for dynamical systems pp 359–99.
Springer Netherlands.
[65]
Saperstone, S.
H. (1981). Semidynamical systems
in infinite dimensional spaces. Springer New York.
[66]
Scheutzow, M.
(2018). Stochastic
differential equations.
[67]
Ševčík, J.
(2021). Synchronizace. Master's
thesis, Masarykova univerzita, Přírodovědecká fakulta, Brno.
[68]
Ševčík, J. and
Přibylová, L. (2025). Cycle
multistability and synchronization mechanisms in coupled interneurons:
In-phase and anti-phase dynamics under current stimuli. accepted for
publication in Applied Mathematics and Computation.
[69]
Shampine, L. F.
and Thompson, S. (2001). Solving DDEs in
matlab. Applied Numerical Mathematics 37
441–58.
[70]
Sieber, J.,
Engelborghs, K., Luzyanina, T., Samaey, G. and Roose, D. (2014). DDE-BIFTOOL manual -
bifurcation analysis of delay differential equations.
[71]
Skinner, F. K.
(2006). Conductance-based
models. Scholarpedia 1 1408.
[72]
Smith, H.
(2010). An
introduction to delay differential equations with applications to the
life sciences. Springer New York.
[73]
Song, H., Mylvaganam, S. M., Wang, J., Mylvaganam, S. M. K., Wu, C., Carlen,
P. L., Eubanks, J. H., Feng, J. and Zhang, L. (2018). Contributions of the
hippocampal CA3 circuitry to acute seizures and hyperexcitability
responses in mouse models of brain ischemia. Frontiers in
Cellular Neuroscience 12.
[74]
Staba, R. J. and
Bragin, A. (2011). High-frequency oscillations and
other electrophysiological biomarkers of epilepsy: Underlying
mechanisms. Biomarkers in Medicine 5
545–56.
[75]
Teschl, G.
(2012). Ordinary differential equations and dynamical systems.
American Mathematical Society, Providence, RI.
[76]
Trefethen, L. N.
(1994). Finite
difference and spectral methods for ordinary and partial differential
equations.
[77]
Verheyden, K.
and Lust, K. (2005). A newton-picard
collocation method for periodic solutions of delay differential
equations. BIT Numerical Mathematics 45
605–25.
[79]
Widmann, D. and
Rackauckas, C. (2022). DelayDiffEq:
Generating delay differential equation solvers via recursive embedding
of ordinary differential equation solvers. arXiv preprint
arXiv:2208.12879.
[80]
Wiggins, S.
(2003). Introduction to applied nonlinear dynamical systems and
chaos. Springer, New York, NY.
[81]
Wikipedia
contributors. (2024). Grothendieck group —
Wikipedia, the free encyclopedia.
[82]
Wikipedia
contributors. (2025). Jordan curve theorem —
Wikipedia, the free encyclopedia.
[83]
Willms, A. R.,
Kitanov, P. M. and Langford, W. F. (2017). Huygens’ clocks
revisited. Royal Society Open Science 4
170777.
[84]
Worrell, G. and
Gotman, J. (2011). High-frequency oscillations and
other electrophysiological biomarkers of epilepsy: Clinical studies.
Biomarkers in Medicine 5 557–66.
[85]
Záthurecký, J.,
Eclerová, V., Ševčík, J., Zapadlo, Š. and Přibylová, L. (2025). Phase shifts inside
arnold tongues of weakly coupled oscillators. Communications in
Nonlinear Science and Numerical Simulation 108729.
[86]
Zemánek, P.
(2021). Optimalizace aneb když
méně je více.