Bibliography
[1]
Bellen, A. and
Zennaro, M. (2003). Numerical
methods for delay differential equations. Oxford University
Press.
[2]
Bezanson, J.,
Edelman, A., Karpinski, S. and Shah, V. B. (2017). Julia: A
fresh approach to numerical computing. SIAM Review
59 65–98.
[3]
Butcher, J. C.
(2016). Numerical
methods for ordinary differential equations. Wiley.
[4]
Chicone, C.
(2006). Ordinary differential equations with applications.
Springer, New York, NY.
[5]
Diekmann, O.,
Verduyn Lunel, S. M., Gils, S. A. van and Walther, H.-O. (1995). Delay
equations. Springer New York.
[6]
Elaydi, S.
(2005). An introduction to difference equations. Springer
Science+Business Media.
[7]
Guo, S. and
Wu, J. (2013). Bifurcation theory of
functional differential equations. Springer New York.
[8]
Hairer, E.,
Nørsett, S. P. and Wanner, G. (2008). Solving ordinary
differential equations I. Springer, Berlin,
Germany.
[9]
Hale, J. K.
(1977). Theory
of functional differential equations. Springer New York.
[10]
Hale, J. K. and
Lunel, S. M. V. (1993). Introduction to
functional differential equations. Springer New York.
[11]
Hartman, P.
(2002). Ordinary differential equations. Society for
Industrial; Applied Mathematics.
[12]
Hutchinson, G.
E. (1948). Circular
causal systems in ecology. Annals of the New York Academy of
Sciences 50 221–46.
[13]
Kloeden, P. E.
and Platen, E. (1992). Numerical solution of
stochastic differential equations. Springer Berlin
Heidelberg.
[14]
Kochenderfer, M.
J. and Wheeler, T. A. (2019).
Algorithms for optimization. MIT Press, London, England.
[15]
Kolmanovskii, V.
and Myshkis, A. (1992). Applied theory of
functional differential equations. Springer Netherlands.
[16]
Kuznetsov, Y. A.
(2023). Elements
of applied bifurcation theory. Springer International
Publishing.
[17]
Lacerda de Orio,
R. (2010). Electromigration
modeling and simulation. PhD thesis, echnische
Universität Wien.
[18]
Inc., T. M.
(2023). MATLAB version:
23.2.0.2365128 (R2023b).
[19]
Mohammed, S. E.
A. (1986). Nonlinear
flows of stochastic linear delay equations. Stochastics
17 207–13.
[20]
Perko, L.
(2001). Differential equations
and dynamical systems. Springer New York.
[21]
Pikovsky, A.,
Rosenblum, M. and Kurths, J. (2001). Synchronization: A
universal concept in nonlinear sciences. Cambridge University
Press.
[22]
Přibylová, L.
(2021). Teorie
bifurkací, chaos a fraktály. Masarykova univerzita.
[23]
Rackauckas, C.
and Nie, Q. (2017).
DifferentialEquations.jl–a performant and feature-rich
ecosystem for solving differential equations in Julia.
Journal of Open Research Software 5.
[24]
Saperstone, S.
H. (1981). Semidynamical systems
in infinite dimensional spaces. Springer New York.
[25]
Scheutzow, M.
(2018). Stochastic
differential equations.
[26]
Ševčík, J.
(2021). Synchronizace. Diplomová
práce, Masarykova univerzita, Přírodovědecká fakulta, Brno.
[27]
Smith, H.
(2010). An
introduction to delay differential equations with applications to the
life sciences. Springer New York.
[28]
Teschl, G.
(2012). Ordinary differential equations and dynamical systems.
American Mathematical Society, Providence, RI.
[29]
Trefethen, L. N.
(1994). Finite
difference and spectral methods for ordinary and partial differential
equations.
[30]
Widmann, D. and
Rackauckas, C. (2022). DelayDiffEq:
Generating delay differential equation solvers via recursive embedding
of ordinary differential equation solvers. arXiv preprint
arXiv:2208.12879.
[31]
Wikipedia
contributors. (2024). Grothendieck group —
Wikipedia, the free encyclopedia.
[32]
Willms, A. R.,
Kitanov, P. M. and Langford, W. F. (2017). Huygens’ clocks
revisited. Royal Society Open Science 4
170777.
[33]
Zemánek, P.
(2021). Optimalizace aneb když
méně je více.