Bibliography

[1]
Bellen, A. and Zennaro, M. (2003). Numerical methods for delay differential equations. Oxford University Press.
[2]
Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review 59 65–98.
[3]
[4]
Chicone, C. (2006). Ordinary differential equations with applications. Springer, New York, NY.
[5]
Diekmann, O., Verduyn Lunel, S. M., Gils, S. A. van and Walther, H.-O. (1995). Delay equations. Springer New York.
[6]
Elaydi, S. (2005). An introduction to difference equations. Springer Science+Business Media.
[7]
Guo, S. and Wu, J. (2013). Bifurcation theory of functional differential equations. Springer New York.
[8]
Hairer, E., Nørsett, S. P. and Wanner, G. (2008). Solving ordinary differential equations I. Springer, Berlin, Germany.
[9]
Hale, J. K. (1977). Theory of functional differential equations. Springer New York.
[10]
Hale, J. K. and Lunel, S. M. V. (1993). Introduction to functional differential equations. Springer New York.
[11]
Hartman, P. (2002). Ordinary differential equations. Society for Industrial; Applied Mathematics.
[12]
Hutchinson, G. E. (1948). Circular causal systems in ecology. Annals of the New York Academy of Sciences 50 221–46.
[13]
Kloeden, P. E. and Platen, E. (1992). Numerical solution of stochastic differential equations. Springer Berlin Heidelberg.
[14]
Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms for optimization. MIT Press, London, England.
[15]
Kolmanovskii, V. and Myshkis, A. (1992). Applied theory of functional differential equations. Springer Netherlands.
[16]
Kuznetsov, Y. A. (2023). Elements of applied bifurcation theory. Springer International Publishing.
[17]
Lacerda de Orio, R. (2010). Electromigration modeling and simulation. PhD thesis, echnische Universität Wien.
[18]
[19]
Mohammed, S. E. A. (1986). Nonlinear flows of stochastic linear delay equations. Stochastics 17 207–13.
[20]
Perko, L. (2001). Differential equations and dynamical systems. Springer New York.
[21]
Pikovsky, A., Rosenblum, M. and Kurths, J. (2001). Synchronization: A universal concept in nonlinear sciences. Cambridge University Press.
[22]
Přibylová, L. (2021). Teorie bifurkací, chaos a fraktály. Masarykova univerzita.
[23]
Rackauckas, C. and Nie, Q. (2017). DifferentialEquations.jl–a performant and feature-rich ecosystem for solving differential equations in Julia. Journal of Open Research Software 5.
[24]
Saperstone, S. H. (1981). Semidynamical systems in infinite dimensional spaces. Springer New York.
[25]
Scheutzow, M. (2018). Stochastic differential equations.
[26]
Ševčík, J. (2021). Synchronizace. Diplomová práce, Masarykova univerzita, Přírodovědecká fakulta, Brno.
[27]
[28]
Teschl, G. (2012). Ordinary differential equations and dynamical systems. American Mathematical Society, Providence, RI.
[29]
[30]
Widmann, D. and Rackauckas, C. (2022). DelayDiffEq: Generating delay differential equation solvers via recursive embedding of ordinary differential equation solvers. arXiv preprint arXiv:2208.12879.
[31]
Wikipedia contributors. (2024). Grothendieck group — Wikipedia, the free encyclopedia.
[32]
Willms, A. R., Kitanov, P. M. and Langford, W. F. (2017). Huygens’ clocks revisited. Royal Society Open Science 4 170777.
[33]